BCD/ACD developments for Cavities

- Several improvements are needed on both BCD/ACD
- A significant amount of R&D work is needed to resolve issues
 - Quality control of the processes of cavity preparation needs improvement

_

- BCD=EP, 6-800° C & EP
 - Need to confirm the amount for damage removal.
 - DESY will get more statistics on nine-cells
- ACD
 - Centrifugal barrel polishing 40 μm BCP
 μm + 750° C & EP 50μm to 75 μm
 - Is Mechanical better alternative?
 - Good for defect removal
 - Good initial surface roughness
 - Environmentally friendly
 - Q disease issue
 - KEK will work on five- or nine-cells
 - 2. BCP & EP ????

- Electropolish improvements:
 - Control of HF concentrations during processing (sulphur)
 - Sample measurements exist at Saclay
 - Jlab: Automated addition of HF during process (relate to current density monitor)
 - DESY: Monitor the current density, improved heat exchanger
 - KEK:
 - Control of Nb content during processing other contaminants?
 - Some sample measurements exist (Saclay, KEK)
 - On EP system
 - Calculated (KEK,JLAB,DESY)
 - Measurement (online, offline)
 - Monitoring removal rate
 - Online (Cornell ?)
 - Offline:
 - Witness Samples (DESY,JLAB)
 - Weight (KEK,JLAB,DESY)
 - Ultrasonic (KEK, CORNELL, JLAB)
 - Are we working in the right part of the I-V curve?
 - Dc (DESY, KEK, JLAB)
 - Voltage control (DESY,KEK,JLAB)
 - Current(JLAB, HENKEL)
 - Feedback (INFN Legnaro)
 - pulcod

- Can we get the right current distributions for uniform etching?
 - Measurement off the removal dependent on position, then calculate (KEK)
 - Grooved in equator region (JLAB bench)
 - Software for calculation (DESY)
 - Fluxgate magnetometer (INFN Legnaro)
- Measure surface roughness as process QA can we do it?
 - Witness samples might be insufficient
 - Measure inside the cavity ?????
- Orientation
 - Horizontal (KEK, DESY, JLAB, HENKEL, INFN)
 - Vertical (CORNELL)
- Other acid compositions
 - Increase HF (KEK, Saclay)
 - Buffering
 - Lactic (JLAB, half cells, test bench)
 - add water plus HF (Saclay)
 - Nitric acid (KEK)
- Develop a technique to EP cavities in helium vessels (understand and minimize voltage drop along cavity)
- Mass production
 - Quick connect (DESY, JLAB?)
 - Acid recycling (KFK)

- Determination of optimum post-etching rinse processes
 - Rinse fluid
 - Water (DESY, JLAB, KEK,)
 - Hydrogen peroxide (KEK, CORNELL)
 - Ozonated water(KEK)
 - Alcohol (DESY, JLAB?)
 - Duration? Output water quality parameters?
 - Rinse & dump? Steady flow?
- Post-rinse handling
 - Manipulation
 - Cleaning of the outside of the cavity
 - Ultra-sound (DESY, JLAB?)
 - HPR (KEK)
 - Storage until HPR
 - baseline is to keep it full of water

- Ultra-pure high-pressure water rinsing
 - Improve water quality with additional/better monitoring
 - Particulates both
 - Input
 - » Online (High Pressure side: Jlab; Low pressure: DESY)
 - output streams
 - » Online (Jlab?)
 - » Offline (DESY)
 - Total oxidizable carbon
 - Need reliable system (Specification? Oil contamination?)
 - » Online (High Pressure side: Jlab; Low pressure: DESY)
 - Active carbon filter (KEK)
 - Degassing of oxygen against bacteria (KEK)
 - Sanitizing procedures (JLAB, DESY?)
 - Dissolved solids
 - Full water analysis (JLAB 1x year)
 - Resistivity (all)
 - Improve cleaning power
 - Optimize nozzle material, geometry, size (JLAB)
 - Optimize flow rates, impact angles (JLAB, INFN Milano)
 - Optimize pressure (JLAB)
 - Investigate electrostatic charging
 - Change of oxide structure, monitoring needed
 - Optimize duration of rinse

- Post-HPR handling:
 - Drying procedures
 - Laminar flow in clean room (DESY, KEK, JLab)
 - Vacuum (DESY, KEK, JLab)
 - Understanding of the best Vacuum system needed(JLAB ?)
 - » Oil-free (DESY ?)
 - » No particulate contamination
 - Hot nitrogen drying (JLAB)
 - Heating
 - With evacuated cavity (KEK): 'In-situ' bake
 - Air bake (SACLAY)
 - Alcohol rinse

- Storage until test
 - air, vacuum, clean nitrogen, argon, ????
- Assembly
 - Standardisation of cleaning methods for sub-components
 - Cf. Mass production
 - QA of particle counts etc.
 - Main power coupler:
 - » Can it be cleaned like the other components (before processing)?
 - Documentation of assembly procedures
 - QA of particle counts etc.
 - Training of people
- Bakeout at ~120° C
 - Optimize low-T bakeout temperature and time (Saclay)
 - Part of the drying process (KEK)
 - Air bakeout (Saclay)
- Backfill
 - Argon
 - Avoid nitride formation during tank welding
 - DESY
 - KEK: After RF test only Argon
 - Nitrogen
 - Jlab, DESY (single-cells), CEA?
 - KEK: Before RF test

- High-temperature heat treatments
 - Integration of furnaces into clean room?
 - $-600-800^{\circ}$ C
 - Optimise temperature and duration
 - Attach furnaces to cleanroom
 - Cavity under separate vacuum
 - -1400° C
 - High RRR needed?
 - Data analysis of cell Eacc/RRR
 - High RRR sheets from supplier

Testing developments

- R&D phase
 - Improve cold test diagnostics
 - Extend thermometry to all tests
 - Visible light monitoring of helium boiling
 - We need to do more post-test forensics
 - All passband modes measured
 - Data on dark current
 - VT:
 - Relation of X-rays to dark current???
 - Measure X-rays in all directions
 - Module test stand
 - Faraday cup

Test Sequence BCD

BCD:

- Vertical low-power test of all cavities
 - Measure 8 cavities in one cooldown
 - Sorting?
 - Different manufacturers for cavities and module (interface)
- High-power test only few single cavities
- All sub-components tested
 - Need to improve quality control of feed throughs, couplers, tuner motors
- Module power test
 - First X % modules, then every Y module
 - Must include dark current measurement

Fabrication ACD developments

- EP half-cells
- Preparation of auxiliary components
 - Cleaning and handling kept consistent with cavity treatments
- Have we got the right gasket material?
- Can we improve flanges to reduce the likelihood of contamination?

Material ACD developments

- Investigate EP with single-crystal/large-grain material
 - Phonon peak
- Optimum heat transfer by reduction of Kapitza
- Investigation on Flux trap n Nb/Cu clad

Mass Production Issues for Preparation Process

- Simplify assembly procedures
- Reduction of hardware counts
- Minimize contact with humans
 - Tooling, Fixtures
 - Investigation of automation
- Determine equipment MTBF
- There is a need to develop QA processes to assess particulate contamination of the inner cavity surface